PERBANDINGAN ALGORITMA SVM DAN RANDOM FOREST PADA KLASIFIKASI KESEHATAH MENTAL BERDASARKAN SLEEP DISORDERS

Linda Nurul Taqwa Pulungan
Ema Utami


DOI: https://doi.org/10.29100/jipi.v10i3.7392

Abstract


Kesehatan mental semakin menjadi isu global yang mendesak, dengan meningkatnya prevalensi gangguan mental yang mempengaruhi jutaan individu di seluruh dunia. Penelitian ini bertujuan untuk mengevaluasi kinerja dua algoritma pembelajaran mesin, yaitu Support Vector Machine (SVM) dan Random Forest, dalam mendeteksi gangguan kesehatan mental melalui analisis pola tidur. Data yang digunakan berasal dari dataset "Stress Level Detection" di Kaggle, yang telah mengalami augmentasi menjadi 1.375 sampel. Dataset dibagi menjadi 80% untuk pelatihan model dan 20% untuk pengujian. Hasil penelitian menunjukkan bahwa algoritma Random Forest memiliki kinerja yang lebih baik dibandingkan SVM, dengan akurasi mencapai 91% dan F1-score rata-rata 89%. Sementara itu, SVM memperoleh akurasi 83% dan F1-score rata-rata 81%. Secara spesifik, Random Forest lebih efektif dalam mendeteksi pola tidur normal serta gangguan seperti insomnia. Temuan ini menunjukkan potensi pembelajaran mesin, terutama Random Forest, sebagai alat yang efektif untuk deteksi dini gangguan kesehatan mental melalui analisis pola tidur, yang dapat digunakan untuk mendukung diagnosis lebih cepat dan akurat.


Keywords


Kesehatan mental; SVM; Random Forest; pola tidur; klasifikasi.

Full Text:

PDF

Article Metrics :

References


T. Lallukka and B. Sivertsen, “Sleep improvement by internet-based cognitive behavioural therapy might help pre-vent mental health disorders,” Oct. 01, 2017, Elsevier Ltd. doi: 10.1016/S2215-0366(17)30360-7.

V. Pandia, A. Noviandhari, I. Amelia, G. H. Hidayat, E. Fadlyana, and M. Dhamayanti, “Association of Mental Health Problems and Socio-Demographic Factors Among Adolescents in Indonesia,” Glob Pediatr Health, vol. 8, 2021, doi: 10.1177/2333794X211042223.

N. A. Fadilah et al., “Analysis of the mental health of pharmacy students at A number of public and private univer-sities in Indonesia,” Exploratory Research in Clinical and Social Pharmacy, p. 100500, Dec. 2024, doi: 10.1016/j.rcsop.2024.100500.

C. J. Bathgate et al., “Elexacaftor/tezacaftor/ivacaftor and mental health: A workshop report from the Cystic Fibrosis Foundation’s Prioritizing Research in Mental Health working group,” 2024, Elsevier B.V. doi: 10.1016/j.jcf.2024.11.006.

M. Maulidah and N. Hidayati, “PREDIKSI KESEHATAN TIDUR DAN GAYA HIDUP MENGGUNAKAN MACHINE LEARNING,” CONTEN : Computer and Network Technology, vol. 4, no. 1, 2024, [Online]. Available: http://jurnal.bsi.ac.id/index.php/conten

L. Williams, W. Bartik, and S. Cosh, “Online anti-stigma interventions for mental health help-seeking in young people: A systematic review,” Dec. 01, 2024, Elsevier B.V. doi: 10.1016/j.jadr.2024.100841.

C. Wellnhofer and C. Preuschhof, “Non-invasive, non-convulsive brain stimulation beyond TMS and ECT in late-life mental disorders: A systematic review,” Dec. 01, 2024, Elsevier B.V. doi: 10.1016/j.jadr.2024.100844.

S. Wong et al., “The effect of weighted blankets on sleep quality and mental health symptoms in people with psy-chiatric disorders in inpatient and outpatient settings: A systematic review and meta-analysis,” Nov. 01, 2024, Else-vier Ltd. doi: 10.1016/j.jpsychires.2024.09.027.

N. Hartini, N. A. Fardana, A. D. Ariana, and N. D. Wardana, “Stigma toward people with mental health problems in Indonesia,” Psychol Res Behav Manag, vol. 11, pp. 535–541, 2018, doi: 10.2147/PRBM.S175251.

A. Pelayanan, K. Di, D. Terpencil, and N. Fatharani, “AKSES PELAYANAN KESEHATAN DI DAERAH TERPENCIL.” [Online]. Available: https://www.researchgate.net/publication/382960113

A. Abd-Alrazaq, R. AlSaad, F. Shuweihdi, A. Ahmed, S. Aziz, and J. Sheikh, “Systematic review and meta-analysis of performance of wearable artificial intelligence in detecting and predicting depression,” NPJ Digit Med, vol. 6, no. 1, Dec. 2023, doi: 10.1038/s41746-023-00828-5.

G. Airlangga, “EVALUATING MACHINE LEARNING MODELS FOR PREDICTING SLEEP DISORDERS IN A LIFESTYLE AND HEALTH DATA CONTEXT,” JIKO (Jurnal Informatika dan Komputer), vol. 7, no. 1, pp. 51–57, Apr. 2024, doi: 10.33387/jiko.v7i1.7870.

P. Daulay, M. Ridho, M. Ferdiansyah Hidayat, S. Dewi, and F. Ramadhani, “QISTINA,” Jurnal Multidisiplin In-donesia, vol. 3, no. 2, 2024.

“pembanding 2”.

O. D. Adeniji, S. O. Adeyemi, and S. A. Ajagbe, “An Improved Bagging Ensemble in Predicting Mental Disorder Using Hybridized Random Forest - Artificial Neural Network Model,” Informatica (Slovenia), vol. 46, no. 4, pp. 543–550, Nov. 2022, doi: 10.31449/inf.v46i4.3916.

W. Afif, N. Rahman, ; Endang, and W. Pamungkas, “IMPLEMENTASI MACHINE LEARNING UNTUK MEMPREDIKSI TINGKAT STRES BERDASARKAN GAYA HIDUP.”

R. Sebastian and C. Juliane, “Comparison of Data Mining Classification Algorithms for Stroke Disease Prediction Using the SMOTE Upsampling Method,” 2023. [Online]. Available: https://sippn.menpan.go.id/,

M. Owusu-Adjei, J. Ben Hayfron-Acquah, T. Frimpong, and G. Abdul-Salaam, “Imbalanced class distribution and performance evaluation metrics: A systematic review of prediction accuracy for determining model performance in healthcare systems,” PLOS Digital Health, vol. 2, no. 11 November, Nov. 2023, doi: 10.1371/journal.pdig.0000290.

R. Yacouby Amazon Alexa and D. Axman Amazon Alexa, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models.”

M. P. Popovi´c, “CHRF: character n-gram F-score for automatic MT evaluation,” Association for Computational Linguistics, 2015.

“[FD]+Perancangan+Antarmuka+Web+Rekrutmen+Karyawan”.

“investigating the influence of linguistic and extralinguistic factors on consonant perception,” 2023, doi: 10.17605/osf.io/rbt8x.

T. Uddin Wara, A. Hossain Fahad, A. Shankar Das, and M. Mehedi Hasan Shawon, “A Systematic Review on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence.”

M. S. Alom, S. M. Jeba, A. Debnath, T. T. Aurpa, and R. Siddiqua, “Enhancing Sleep Disorder Diagnosis with a Machine Learning Approach Using Ensemble Neural Networks: Sleep Disorder Diagnosis with Ensemble Neural Networks,” in Proceedings of the 11th International Conference on Networking, Systems, and Security, New York, NY, USA: ACM, Dec. 2024, pp. 48–55. doi: 10.1145/3704522.3704533.